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Complete synchronization and generalized synchronization of one-way coupled time-delay system
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The complete synchronization and generalized synchronization~GS! of one-way coupled time-delay systems
are studied. We find that GS can be achieved by a single scalar signal, and its synchronization threshold for
different delay times shows theparameter resonanceeffect, i.e., we can obtain stable synchronization at a
smaller coupling if the delay time of the driven system is chosen such that it is in resonance with the driving
system. Near chaos synchronization, the desynchronization dynamics displaysperiodic burstswith the period
equal to the delay time of the driven system. These features can be easily applied to the recovery of time-delay
systems.
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Chaos synchronization has aroused great interests in
study of nonlinear dynamics@1# due to the potential applica
tion in engineering, and the understanding of complica
phenomena in nature. Different kinds of synchronizat
have been found: complete synchronization~CS! @2,3#, gen-
eralized synchronization~GS! @4#, phase synchronization@5#,
and lag synchronization@6,7#. CS means that the couple
systems remain in step with each other in the course of ti
It is obvious that CS is the simplest and strongest fo
among the diverse synchronization behaviors. Only
coupled systems with identical elements~i.e., each compo-
nent having the same dynamics and parameter set! can we
observe CS. In the study of nonidentical coupled syste
particularly in the drive-response systems@using X(p,t) to
drive Y(p8,t), p and p8 being different parameters#, GS is
observed under sufficiently strong driving: the response s
tem is a function of the driving system,Y(t)5F„X(t)….
Clearly F[1 for CS, and CS is only a subset of GS. Wi
GS,Y(t) is totally ‘‘slaved,’’ and loses its intrinsic chaoticity
in the absence of coupling, or in other words, the exponen
sensitivity with initial condition. Therefore, all driven sys
tems with different initial conditions under the same drivi
can be following the same trajectories under GS if there is
other attractor in the phase space.

It is known that chaos synchronization is extensively e
ploited in secure communication. The initial motivation
very straightforward: one can use the essential characteri
of chaos ~temporal complexity and apparent randomne!
and hide the information to be transmitted in a chaotic sign
and retrieve it by using the technique of chaos synchron
tion at the receiver end. Nevertheless, many researchers
found that secure communication based on low-dimensio
system is not as secure as we commonly believe, since
low-dimensional chaotic system can be reconstructed ea
by the embedding method, and can then be separated
the secure information@8#. Because of this, researche
started to look into chaos synchronization in hig
dimensional systems, and have found coupled map latt
~CML! @9# and coupled time-delay systems@10# to be rea-
sonable candidates. Very recently Ref.@11# has proposed a
1063-651X/2003/68~3!/036208~5!/$20.00 68 0362
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new method based on the CML with supposedly high se
rity. Analytical studies and numerical simulation of CS
coupled time-delay systems have also been extensively
vestigated@12–14#. In this paper, we mainly study both C
and GS of one-way coupled time-delay systems. In parti
lar, we focus on the relationship between these two mode
synchronization, the critical coupling strengths for synch
nization at different delay times, and the desynchronizat
dynamics.

To be specific, we consider the case of one-way coup
time-delay systems:

ẋ5 f ~x,xt1!,

ẏ5 f ~y,yt2!1«~x2y!, ~1!

where ẋ5 f (x,xt)5axt /(11xt
b)2cx is the Mackey-Glass

~MG! equation@10#, a52, b510, andc51, xt5x(t2t)
denotes the time-delayed variable, and« is the ‘‘coupling
constant.’’ In this case,t1 can be different fromt2, and GS
in the parameter space oft1 andt2 is the principal focus of
study in this paper.

We would like to first highlight some of the properties
a single MG system at the above parameters@10,12#. At t
,0.471, there is a stable fixed point attractor; for 0.471,t
,1.33, a stable limit cycle attractor emerges; att51.33, the
system starts on a period doubling bifurcation sequence u
the accumulation point att51.68. Beyond that (t.1.68),
we find a chaotic attractor at most parameter values ot,
with the number of positive Lyapunov exponents and
information dimension increasing linearly witht, whereas
the metric entropy remaining roughly constant. In oth
words, at large enought, the system has a high-dimension
chaotic attractor.

As a start, let us study CS when the driving and driv
systems have the same delay time,t15t25t at Eqs.~1!. A
linear stability analysis is performed with a small deviati
D(t)5y(t)2x(t) from the synchronization manifold, whos
stability is governed by

Ḋ5@]1f ~x,xt!2«#D1]2f ~x,xt!Dt , ~2!
©2003 The American Physical Society08-1
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where]1 and]2 are the partial differentials off (x,xt) with
respect to the first and second variables, respectively,
Dt5D(t2t). As in the treatment of systems described
ordinary differential equations, we can define the largest c
ditional Lyapunov exponent of CS as@12#

l1~«!5 lim
t→`

1

t
ln
H E

2t

0

D2~ t1w!dwJ 1/2

H E
2t

0

D2~w!dwJ 1/2 . ~3!

Clearlyl1(«) controls the stability of the complete synchr
nous statey(t)5x(t). In particular, ifl1(«),0, we will be
able to observe stable CS.

In Ref. @12#, Pyragas has studied CS in Eqs.~1! and found
that with increasingt, the synchronization threshold in th
coupling parameter first increases and then saturates to
nite value of'0.70~see Fig. 1!. ~For all the numerical com-
putations in this paper, the fourth-order Runge-Kutta al
rithm with a fixed step size ofh50.01 is used, and the mai
numerical results have also been verified by the prog
DDE23 in MATLAB @15#.! As a result, even by transmitting
single scalar variable@x in Eqs.~1!#, CS is possible for these
systems which, when uncoupled, possess an arbitrarily l
number of positive Lyapunov exponents. This is obviou
contrary to the intuitive idea that a large number of transm
ted signals would be required to suppress the unstable d
tions of the synchronous state with many positive Lyapun
exponents.

We then ask ourselves the question of what happenst1
is not equal tot2. In this case, we know that CS cannot
achieved, but then is stable GS possible? If it is, we wo
then want to know the relationship between the synchron
tion threshold for differentt1 and t2. Experimentally, we
usually use the auxiliary system method to detect GS: tha
given another identical driven auxiliary systemZ(t), GS be-
tweenX(t) andY(t) is established with the achievement
CS betweenY(t) and Z(t). The coupled systems can b
expressed as

FIG. 1. The dependence of the synchronization threshold
CS, «c1, on the delay timet. Above this curve, stable CS can b
achieved.
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ẋ5 f ~x,xt1!,

ẏ5 f ~y,yt2!1«~x2y!,

ż5 f ~z,zt2!1«~x2z!. ~4!

In fact, the auxiliary system method detects the local stabi
of the generalized synchronous state ofY(t)5F„X(t)….
With L(t)5z(t)2y(t), we then obtain the linearization sta
bility equation of GS,

L̇5@]1f ~y,yt2!2«#L1]2f ~y,yt2!Lt . ~5!

Similarly, we define the largest conditional Lyapunov exp
nent as

l2~«!5 lim
t→`

1

t
ln
H E

2t2

0

L2~ t1w!dwJ 1/2

H E
2t2

0

L2~w!dwJ 1/2 . ~6!

Figure 2 shows the relation between«c2 andt2 with a fixed
delay time for the driving system,t15100. Similar to CS in
Fig. 1, with increasingt2, the synchronization threshold«c2
increases and then saturates to a finite value of 0.84 app
mately. Thus even GS, just as CS, can be achieved b
single scalar signal. Apart from this similarity, however, w
also observe sharp dips located at the~resonance! parameter
values: neart251005t1 and t25201'2t1 ~see the two
magnified figures in Fig. 2!, and those neart2549't1/2 and
t25305'3t1 with some apparent fluctuations. Thisparam-
eter resonanceeffect in GS certainly reveals how the nonlin
ear dynamics of coupled systems changes with the matc
of two delay time scales. Moreover, its universality has be
confirmed for differentt1 in Fig. 3, plotted with the solid
points denoting the local minima of the resonance pea
Nearly all of these minima are located near the resona
values:t25t1/2,t1 ,2t1 ,3t1. Note thatt1 varies over a very

r
FIG. 2. The dependence of the synchronization threshold

GS, «c2, on the delay timet2. ~The delay time of the driving
system is fixed att15100.! The two insets are the blowup of th
two regions neart25t15100 andt252t15200.
8-2
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wide parameter region from 5 to 100. The higher-order re
nance peaks~for example,t2't1/3 or t2'4t1) do not seem
to show up well, perhaps because of the coarse scannin
carried out.

To try to understand this resonance phenomenon be
we plot in Fig. 4l1 ~solid circles! andl2 ~hollow circles! vs
coupling« for t15t25t5100. Note that we can discuss th
stabilities of both CS and GS only for identical coupled s
tems. After the transition to CS atl1(«), the manifold of GS
with Y(t)5F„X(t)… degenerates to that of CS withY(t)
[X(t), so, l2(«) is equal tol1(«) for «.«c1. An impor-
tant observation from Fig. 4 is that the coupled systems tr
sit to generalized synchronous chaos directly, and the s
chronization thresholds of CS and GS areidentical @16#,
«c15«c2. ~It should be emphasized that the pattern in Fig
is independent of the chosen value oft.! This feature closely
connects with the parameter resonance effect in Fig. 2,
we can at least understand in an intuitive way the resona
~dip! to the common threshold of value of'0.70 for GS and
CS att2'100.

FIG. 3. The universality of the parameter resonance effect.
find nearly all of resonance positions stay at or aroundt25t1/2,
t1 , 2t1, and 3t1.

FIG. 4. The largest conditional Lyapunov exponent of CS,l1

~solid circles!, and that of GS,l2 ~hollow circles!, as a function of
the coupling« for t15t25t5100.
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In order to understand the synchronization mechanism
will be important to follow the dynamics in the vicinity o
the synchronization threshold. Figure 5 shows the relat
betweenx, y, and z in Eqs. ~4!, with t15t25100, for «
50.71@Figs. 5~a,b!# and«50.69@Figs. 5~c,d!#, respectively.
Above the synchronization threshold,«c25«c1'0.702, both
perfect CS@Fig. 5~a!# and GS@Fig. 5~b!# are observed; below
it, CS @Fig. 5~c!# and GS@Fig. 5~d!# lose stability simulta-
neously, and the desynchronization behavior shows bu
out of the diagonal occasionally with rough synchronizati
at most time. The time traces of the differencex2y are
displayed in Figs. 6~a! and 6~b!. In Fig. 6~a!, the total obser-
vation time is 43105 after discarding the long transient dat
with one out of every 20 points plotted. The intermitte
behavior is reminiscent of the usual desynchronous cha

e

FIG. 5. The dynamics in the vicinity of the synchronizatio
threshold for~a!, ~b! «50.71 ~above«c) and ~c!, ~d! «50.69 ~be-
low «c). t15t25t5100. «c25«c15«c'0.702.

FIG. 6. The desynchronization dynamics of the driving and
response systems for the parameter values«50.69. ~a! and~b! The
time evolution of the differencex2y. ~c! The distribution of the
laminar phase ofx2y.
8-3
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behavior of on-off intermittency, in which the system d
namics typically stays most of time in the vicinity of th
synchronization manifold with occasional bursts out of it.
remarkable finding in this investigation is the more detai
structures@in Fig. 6~b!#: periodic bursts with a period that i
equal to the delay time. Now the observed part is the fi
500 time units in Fig. 6~a! in 0.1 intervals. Figure 6~c! pre-
sents the histogram distribution of laminar phases with
sampling number being 53105 and the critical valued to
demarcate the ‘‘off’’ state being 0.1. ForT.100, because o
the periodicity of the trajectory, it also displays period
bursts atnt, n51,2,3, . . . . There is strong suggestion of
power-law distribution,P(T)}T2a, with a'1.25. For dif-
ferentd, sayd50.01, similar distribution with the same sca
ing is obtained. The possible reason fora deviating from the
normal exponenta51.5 for simple on-off intermittency is
probably because the dynamics is high dimensional@13#.

The characteristics of the desynchronization dynam
with on-off intermittency and periodic bursts appear to
general. Similar to Fig. 5, but now witht15100 andt2
590, the behaviors ofy vs x and z vs x are plotted for«
50.85 @Figs. 7~a! and 7~b!# and «50.82 @Figs. 7~c! and
7~d!#, respectively.~Recall that«c2'0.834.! In Figs. 7~a!
and 7~b!, GS without CS@y(t)5z(t)Þx(t)# is observed.
From Figs. 7~a! and 7~c!, we cannot tell the difference be
tween the driving and response systems, while the trans
to the identity of two driven systemsy andz @from Figs. 7~d!
to 7~b!# indicates the establishment of GS. Similar to Fig.
on-off intermittency at large time scale@Fig. 8~a!#, periodic
bursts with the delay time of the driven systemt2590 as the
period at small time scale@Fig. 8~b!#, and the distribution
with similar pattern and same scaling@Fig. 8~c!#, are again
observed. We have verified that these results are not affe
by the existence of small noise levels. Three independ
noise sources with a strength of 1023 and Gaussian distribu
tion are added to the right-hand side of Eqs.~4!. The periodic
bursts persist even with the coupling larger than the crit

FIG. 7. Same as Fig. 5 but for a nonidentical coupled time-de
system. The parameters aret15100 andt2590, and now«c2

'0.834. ~a! and ~b!—«50.85 ~above«c2). ~c! and ~d!—«50.82
~below «c2).
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value—hence the environmental noise smooths out the t
sition and enlarges the parameter region of the phenome
This robustness certainly is very useful for experimental
plication.

Chaos synchronization of coupled time-delay system
exploited in secure communication for two important re
sons: the system is of high dimensionality with multip
positive Lyapunov exponents, and it is easy to construct.
the other hand, a special embedding approach recently
posed in Ref.@17# seems to suggest that communication u
ing chaos synchronization of time-delay systems is not
secure as one might expect. The essential idea of the
proach is simple: in the three-dimensional space (x,xt0 ,ẋ),
the dynamics of the time-delay system is projected to
smooth manifold,ẋ2 f (x,xt 0)50, in contrast to the high
dimensionality of the original phase space. In a similar sp
(x,xt ,ẋ), however, withtÞt0, the trajectory is no longer
restricted to a smooth hypersurface. Through a searcht
space, we can identify the delay timet0, reconstruct the
chaotic dynamics, and unmask the hidden message.

In fact, the findings in this paper can also be applied e
ily to recover time-delay systems. Taking advantage of
‘‘parameter resonance’’ effect, we can search the thresh
coupling strength for the driving at differentt1. The position
of a drop in«c2 marks the approximate value oft2. Another
easier approach is based on the desynchronization dyna
in Fig. 8~b!. We can use an arbitrary time-delay system
drive two secured systems~which we want to attack! with
the same parameter set and different initial conditions. T
time we tune the driving strength from above to below t
critical value. Below the critical GS, the periodic bursts
the difference in the state variables will uncover the secre
their delay-time parameter. Because«c2 is not sensitive with
the changing oft1 andt2, except in the parameter resonan
region, and the coupled systems are not sensitive to the
bient noise, this method should be realizable under exp
mental conditions.

y FIG. 8. The desynchronization dynamics near a stable GS s
t15100 andt2590. The interval of the grid lines in~b! is 90.
8-4
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In conclusion, CS and GS of unidirectionally couple
time-delay systems have been investigated. First, simila
CS, GS can be achieved through only one driving signal,
the threshold coupling strength saturates at a finite valu
the time-delay increases, except for the parameter reson
effect, which is induced by the matching of the delay tim
between the driving and response systems. The second
s,
c
1
.F

r-

ev
.

ev

v.
,
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nificant observation, which can be applied directly in t
breaking of chaos-based secure communication, is that
desynchronization dynamics of both CS and GS is identifi
with periodic bursts. Since an electronic analog of the M
system has been implemented@18#, we believe our numerica
results are generic and consequently observable in labora
experiments.
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